
A TRIDENT SCHOLAR
PROJECT REPORT

NO. 270

Development and Implementation of an Adaptive Error Correction Coding Scheme
for a Full Duplex Communications Channel

UNITED STATES NAVAL ACADEMY

ANNAPOLIS, MARYLAND

This document has been approved for public
release and sale; its distribution is unlimited.

DUO QUALITY INSPECTS
20000424 161

USNA-1531-2

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

P.-.: resorting ouraen for mis collection of mfonnaiior. is estimated to average 1 hour per resoonse including g the time for reviewing instructions, searching existing data
scu-ces. gatnenng anc maintaining tne data neeaec and completing and reviewing me collection of information Send comments regarding this burden estimate or any other
assect o' me collection of information including suggestions for reducing tnis Burden to Washington Headquarters Services. Directorate for Information Operations and Reports.
'215 Jefferson Davis Highway. Suite 1204, Artmgton, VA 22202-4302. and to tne Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington. DC
2J5Z3

1. AGENCY USE ONLY (Luve blank) 2. REPORT DATE
£ Kay 1999

3. REPORT TYPE AND DATE COVERED

4 TITLE AND SUBTITLE
Development and Implementation of an Adaptive Error
Correction Coding Scheme for a Full Duplex
Communications Channel
6. AUTHOR(S)
Waterston, John W.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Naval Academy
Annapolis, MD

5. FUNDING NUMBERS

8. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT NUMBER

USNA Trident Scholar project report
no. 270 (1999)

10. SPONSORING/MONITORING AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Accepted by the U.S. Trident Scholar Committee

12». DISTRIBUTION/AVAILABILITY STATEMENT " " "

This document has been approved for public release; its distribution
is UNLIMITED.

12b. DISTRIBUTION CODE

« JSf^^ r",arCh "v..tx,.t.., vi. uaüiticn, th. bit error probability (BXP) ...oci.te d with . variable
redundancy coding .eherne operating in a «irale.. communication, environment. Within a .lowly varying (flat fading)
Raylexgh channel adaptive algorithm provide incr.a.ed throughput over fixed codin, i^,le»enJtion. Pro» a family
of BCH code, of the block length <n-63), a code with appropriate redundancy i. chosen depending on th.
receiver . estimation of the current condition, experienced in thi. channel. Two different deci.ion technique, are
«w!*! J? t"* ■*th°d •t*ti»tic»11y «valuate. the receiver', input and calculate, the signal to noi.Wratio
(Eb/No), while the second method oba.rve. the number of corrected error, in recently decoded block. With thi.
information, the adaptive .y.tem decide, to modify the correction ability of the code, and than transmit, thi.
decision to the encoder over a low bandwidth feedback channel. The correction ability can be changed on a block bv
block basis. This algorithm is implemented in software and, therefore, can be optimired for many real world
communications system.. Th. low co.t of high .peed microproee..or. and DSP. allow, for th. development of . robu.t
adaptive coding .y.tem in hardware. The result, are compared again.t fixed coding implementation, and .how that th.
adaptive proc... maintain, a better efficiency <n - k/n) of information rate while keeping the bit error probability
near the level obtained by -.«■«—„. encoding. F'«»""ity

14. SUBJECT TERMS

Variable Redundancy, Rayleigh Fading Channel, BCH Codes,
Forward Error Correction, Channel Estimation, Adaptive
Coding.

17. SECURITY CLASSIFICATION
OF REPORT

NSN 754O-01-280-5500
(R.v.2-89)

18. SECURITY CLASSIFICATION
OF THIS PAGE

15. NUMBER OF PAGES

16. PRICE CODE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

Standard Form 298
Prescribed by ANSI Std. Z39-18
298-102

U.S.N.A. — Trident Scholar project report; no. 270 (1999)

Development and Implementation of an Adaptive Error Correction Coding Scheme
for a Full Duplex Communications Channel

by

Midshipman John W. Waterston, Class of 1999
United/S/ates JMaval Academy

dryland/

(signature)

Certification of Advisers Approval

Assistant Professor Ellen Curran K. Wooten
Department of Electrical Engineering

(signature)
Q^ yyv^ 1 13*)

(date)

Associate Professor William E. Bennett
Department of Electrical Engineering

(signature)
Of tyty /?r?

(date/

Acceptance for the Trident Scholar Committee

Professor Joyce E. Shade
Chair, Trident Scholar Committee

 (tet~ Aa~-
v (signature) (signature)

(date/

USNA-1531-2

Abstract

This research investigates, via simulation, the bit error probability (BEP) associated

with a variable redundancy coding scheme operating in a wireless communications

environment. Within a slowly varying (flat fading) Rayleigh channel, adaptive algorithms

provide increased throughput over fixed coding implementations. From a family of BCH

codes of the same block length (n=63), a code with appropriate redundancy is chosen

depending on the receiver's estimation of the current conditions experienced in this channel.

Two different decision techniques are compared. The first method statistically evaluates the

receiver's input and calculates the signal to noise ratio (Eb/No), while the second method

observes the number of corrected errors in recently decoded blocks. With this information,

the adaptive system decides to modify the correction ability of the code, and then transmits

this decision to the encoder over a low bandwidth feedback channel. The correction ability

can be changed on a block by block basis. This algorithm is implemented in software and,

therefore, can be optimized for many real world communications systems. The low cost of

high speed microprocessors and DSPs allows for the development of a robust adaptive

coding system in hardware. The results are compared against fixed coding implementations

and show that the adaptive process maintains a better efficiency (r| = k/n) of information rate

while keeping the bit error probability near the level obtained by maximum encoding.

Keywords: Variable Redundancy, Rayleigh Fading Channel, BCH Codes, Forward Error

Correction, Channel Estimation, Adaptive Coding.

Acknowledgments

Throughout my Trident project I have worked with many wonderful people whom

I would like to thank. My advisors, Dr. William Bennett and Dr. Ellen Wooten, have shared

my excited discoveries and also guided me through periods of frustration. Without the two

of them, I would not have been able to move past the endless problems and begin structured

investigation. CDR Welch, with his expertise in wireless communications, has focused my

research towards a realistic system and a worthwhile goal. He has been a wealth of

information with an office door that is always open. Dr. Antal Sarkady's lectures in

communications have given me the inspiration to pursue this field for my time at the

Academy and another two years at Stanford.

Most of all, my parents have always been a great source of support and motivation.

Even when they do not understand the problem they are always there for me. Mark and

Casey have kept me sane, allowing me to take a break from my academic pursuits. Thanks

again.

"If I have seen further, it is by standing on the shoulders of Giants"

-Sir Issac Newton

Table of Contents

Abstract 1

Acknowledgments 2

Figures 4

1. Introduction 5
1.1 Background 5
1.2 Project Description 6
1.3 Contributions 8
1.4 Overview 8

2. Project Design 10
2.1 Communication System 10

2.1.1 Data Input 11
2.1.2 BCH Encoder 11
2.1.3 BPSK Modulator 14
2.1.5 Additive White Gaussian Noise 15
2.1.6 Demodulator 15
2.1.7 BCH Decoder 15

2.2 Adaptive System 16
2.2.1 Statistical Adaptive Decision Method 16
2.2.2 Error Based Adaptive Decision Method 18

3. Procedure 20
3.1 Simulation Technique 20
3.2 Output Validation 20
3.3 Experimental Results 24

4. Conclusions 28
4.1 Challenges 29
4.2 Future Work 29
4.3 Future Applications 30

References 31

Appendix 32
BCH Code Parameters 32
MATLAB Files 33

4

Figures

Figure 1. System Block Diagram

• • 11 Figure 2. Graphic Code Description

Figure 3. Signal Transformation through a Communications System 13

Figure 4. Statistical Adaptive Decision Method 17

Figure 5. Error-Based Adaptive Decision Method 18

Figure 6. BPSK Waveform and AWGN 21

Figure 7. Rayleigh Channel and AWGN 22

Figure 8. Family of BCH Codes: Length 63 23

Figure 9. Efficiency (r\) vs. SNR 24

Figure 10. BEP vs. SNR 25

Figure 11. Metric vs. SNR 26

1. Introduction

As the amount of digital data has exponentially increased in recent years, it is more

important to provide efficient data rates while keeping high data integrity. It is impractical

to maintain a very low bit error probability (BEP) with fixed error correction systems. BEP

is calculated by taking the total number of bit errors and dividing by the total number of bits

of transmitted data. When redundant bits are combined with data, less data is transmitted per

message, thereby increasing the necessary time for transmission by up to a factor of nine.

In simulation this is the difference between transmissions with an efficiency of 100 percent

and those with 11 percent efficiency due to maximum levels of error correction. An example

of the tradeoffs made in a specific application is that of P-3 Orion aircraft crews operating

in mission situations. Because of the increased transmission time, these crews often tend to

turn off error-control devices when transmitting digital pictures. They are willing to send

degraded images rather than wait for the extremely slow transmission which occurs when

using the correction scheme [7]. This inverse relationship between data reliability and

efficiency is a focus of modern digital communications. Reliability is determined by the

error correction ability of the system, while efficiency is determined by the transmission rate

of the original data. The goal of this research is to develop and implement an adaptive

system that could efficiently and effectively balance these two parameters for a wireless

communications system

1.1 Background

Error correction schemes were developed half a century ago. In 1948, Shannon

6

stated that coded data can be transmitted at rates near the channel capacity with an arbitrarily

small probability of error. This statement has since led to much research in finding the most

efficient methods of transmitting data in a noisy environment. Coding is the addition of

redundant bits to a message in order to allow for the receiver to correct corrupted data

without having to retransmit the message. More redundancy allows for more errors to be

corrected upon reception. Coding transforms a block of information with length k into a

coded block of length n. Shannon's theorem states more specifically that for any code of

block length (n) with a rate (R=k/n) less than the channel capacity, there exists a block code

with the probability of error (Pe) given below. E(R) is a positive function of the code rate

specified by transition probabilities. The probability of errors can be reduced by keeping the

rate below capacity and increasing block length [6].

Pe<e-"E^ (1.1)

The extensive and powerful class of codes used in this project were discovered by Bose,

Chaudhuri, and Hocquenghem (BCH) in 1960.

1.2 Project Description

This Trident research project involved designing a system using error-correcting

codes that adapts to a continuously changing communications environment. This system

design was developed using programs written in the MATLAB® programming environment.

This method of simulation allows for rigorous investigation while having very flexible

design parameters. For example, the data type, coding, modulation, and channel parameters

all can be changed. The simulations for this research were completed in a communications

system that modeled the characteristics of a digital cellular phone with a frequency of 881

MHz, 9600 bit per second data rate, and a speed of 30 kilometers per hour (IS-95 standard).

Included as part of a larger communications system, the project's central component

is the adaptive system There are many possible methods of adaptation applicable to digital

communications, including slowing data rates, increasing transmitter power, employing

diversity, and variable error control with codes [1]. A variable redundancy scheme was

decided upon because the method involved coding, yet was easy to implement. In this

scheme, the block length remains constant and the information length changes. The family

of BCH codes with length 63 was chosen because it has 11 possible (n, k) combinations.

This was few enough to keep the design simple, but allowed for enough states to demonstrate

the system adapting to the environment. Keeping the block length constant keeps the

transmitter operating at a constant bandwidth and simplifies the receiver structure.

Adaptation is controlled by a device that makes a decision about the current channel

condition and then selects an appropriate level of coding. This decision is then

communicated over a low bandwidth feedback channel to the encoder. This process of

evaluation and decision occurs with every transmitted block. Two different evaluation and

decision-making methods are compared during the research.

Benice in 1966 looked at variable redundancy coding and said that this "adaptive

technique was of little value [1]." However, the addition of greater computational ability

brings new insight to the modern evaluation of this method in wireless environments.

1.3 Contributions

The entire adaptive error-correction system developed in this project incorporates

new design aspects for the simulation and implementation of variable redundancy coding.

A list of these specific contributions include:

(i) Developing two methods to make adaptation decisions

Before the adaptive system can reliably modify the current level of

redundancy, development of the methods to properly determine the location

of these transition decisions had to occur. One method uses statistical

techniques to make these decisions. The other uses error information from

the decoder to signal when more redundancy is needed. Within each method,

threshold values control the response, so appropriate values had to be decided

upon and evaluated.

(ii) Constructing a working simulation of a real-world system

A communications system is comprised of many sub-systems. Each of the

sub-systems needs to be implemented and validated through comparison to

known equations. Important blocks include: the random data generator, BCH

encoder, BPSK modulator, Rayleigh Channel, additive white Gaussian noise,

integrating receiver, and BCH decoder. Only after all of these components

are working and validated can research into an unknown area be investigated.

1.4 Overview

With the given necessity for reliable data and rapid transmission, this research

9

examines an adaptive error-correction coding scheme. This method of variable

redundancy will not only increase information sent per block when conditions are

favorable, but will also increase redundancy as conditions deteriorate. The next section

introduces the project design and the essential sub-systems using technical detail. The

description of the validation and experimentation procedure follows, and this section

concludes by presenting and comparing the results of both adaptive methods. Finally, the

discussion is completed while drawing conclusions and listing areas of future work and

application.

10

2. Project Design

The project can be divided into two fundamental components: a communications

system and an adaptive system Each is composed of many individual sub-systems. An

introduction to each of these systems and sub-systems, with supporting examples, is now

provided.

2.1 Communication System

The communications system for this project can be visualized by a multi-stage

process which is implemented in MATLAB® code as individual sub-systems (Figure 1).

BCH Encoder
Length n

BCH Decoder

BPSK
Modulator

Adaptive System

Channel Estimator 4
Decision Device

Transmitter

Error Information Statistical Information

Demodulator
Integrating
Receiver

Figure 1. System Block Diagram

11

2.1.1 Data Input

In the first stage, the data is originally analog data (i.e., voice into a microphone) that

is converted into binary symbols by an analog/digital converter, or the data is already in a

digital format (i.e., satellite telemetry). The "data" chosen for simulation is characterized by

a random set of O's and l's that are equiprobable. This data was created by modifying the

output of a random number generator in MATLAB® . A benefit of this generator function

was its ability to be reset, so that repeated simulations can be compared with exactly the

same data set.

2.1.2 BCH Encoder

Family of BCH Codes - Length (n) = 15

1111 8 111! 0 mil 0 lilt i
§83»

||| <>. 1 1 0 1

n=15 k=U f=1 fl=73.33%

i■ ♦♦♦♦
►vX%i &£4

n=15 k=7 t=2 fl=46.66%

:«*

n=15 /c=5 t=3 fl=33.33%

Information Bit (k) o| = Redundant Bit (n-k) WM = Error Bit (f)
1 • l^y^^J-TrT■-,

Figure 2. Graphic Code Description

12

This binary data stream of source bits is sent to the BCH encoder, where it is

lengthened by coding bits and transformed into channel bits. Error-correcting codes rely on

redundancy and data averaging. By the addition of redundant symbols, the uniqueness of

each message is increased. In an optimal coding scheme, the data stream is divided into

blocks of bits so that a percentage of the individual bits of the block can be in error without

destroying all of the uniqueness contained in the block. To correct errors in a block, not all

possible block sequences are used as legitimate messages. In fact, to correct t or fewer

errors, each legitimate message must differ from each other by at least 2t+l positions. This

minimum number of positions that a sequence must differ is called d or the Hamming

Distance. The notations which are helpful when describing codes include n, the block code

length, and k, the length of the information sequence. Therefore, the efficiency of a chosen

code is the code rate, R=k/n, and the amount of redundancy is n-k. The efficiency is a good

way to compare the performance of different codes. A visualization of these parameters is

given in Figure 2.

The Bose-Chaudhuri-Hocquenghem (BCH) family of error-correcting codes is used

to combat data errors in the system Discovered in 1960, this class of cyclic codes defined

from a generating polynomial g(x) provides a large class of easily constructed codes with

multiple block lengths (n) and code rates (R). For BCH codes, n always is equal to a power

of two, minus one (e.g. 15;127;255). The longer the block length, the more possible levels

of correction exist. A BCH code with length 63 has eleven levels, while the length 127 code

has 17. The optimum code rates for BCH codes are between 1/3 and 3/4; at other rates the

added redundancy does little to help performance and it can actually hinder performance.

13

The mathematics involved with code generation and decoding use linear algebra and

Galois Theory, a form of modern algebra with finite fields [5,6]. The development of the

techniques necessary to form the generator matrix of the block code is very complex and will

not be covered in this report.

BCH codes can be implemented using shift registers. A shift register is a basic logic

function available on most microprocessors and gate arrays which would allow hardware

implementation with little difficulty.

In summary, the encoder adds redundancy following mathematical rules, increasing

the block of data from length k to length n. An example of the signal transformation at the

Information length k=7
(source bits)

Data leng
ihannel bi

Coded Data length n=15
(channel bits)

BPSK Modulation

Sampled

Rayleigh Fading

AWGN Ü

0 10 0 11 0 1 0

0 10 0 11 0 10 10 11 D 1

1 1 1 1 1 11 1

0 0 0 0 0 0 3

llll
'TTT ▼ ▼ ▼ T TTTT ,r'

Figure 3. Signal Transformation through a Communications System

14

encoder and subsequent portions of the communications system is shown in Figure 3. The

constant block length («=63) was used throughout the project.

2.1.3 BPSK Modulator

Within the current block of data (length 63 bits), each bit is sampled four times and

modulated into a Binary Phase Shift Keyed (BPSK) signal, where -1 represents a binary zero

and 1 represents a binary 1. The signal now has a mean of zero, thus removing the DC

energy. Also the greater amplitude between binary levels decreases the signal's susceptibility

to errors. The digital waveform output is sent to the transmitter.

2.1.4 Rayleigh Fading Channel

During transmission, the signal is modified by a channel modeled after the specific

expected environment. The Rayleigh fading channel represents wireless propagation in a

time-variant multipath scenario. This environment is applicable for cellular and HF

applications. The slowly varying channel is described as flat fading since the fading does not

change during the length of a block. Amplitude variations in the received signal, termed

"signal fading," are caused by the constructive or destructive addition of incoming

waveforms. The envelope at any instant is Rayleigh distributed and gives the channel its

name. The digital waveform beginning with amplitudes of+/- 1 may now be represented by

a smaller or larger value as shown in Figure 3. This fading is a random process, but it does

have memory between adjacent states [8]. The channel used in simulation represents a

moving digital cellular phone (IS-95) transmitting data at 9600 bps.

15

2.1.5 Additive White Gaussian Noise

Additive white Gaussian noise (AWGN) is added at the input of the receiver, where

it represents the thermal noise at the receiver, with a zero mean and a Gaussian probability

distribution. During simulation, each of the four sample points per bit has this noise added

as shown in Figure 3. For different simulations, the level of the noise is modified, changing

the signal to noise ratio (SNR).

2.1.6 Demodulator

The receiver integrates over every four samples (a bit) transforming a digital

waveform back into a binary bit stream Whether the result of this integration is greater or

less than zero determines whether a 0 or a 1 was sent. Perfect framing and synchronization

were assumed for the simulations. This binary stream forming a coded block is sent to the

BCH decoder where the coding and errors induced by the channel are removed. The input

to this system is also used as an input to the statistical decision process.

2.1.7 BCH Decoder

The decoder being used for these codes locates and correct errors in the information,

while removing the redundant information. Errors can only be corrected up to the level

specific to the minimum distance (d) of each code. If this threshold is exceeded, the output

contains an unknown amount of errors. The decoding is accomplished by using complicated

mathematical techniques that reverse the encoding process while tolerating induced errors

[6]. The type of decoding process used is called hard decision because it takes an input with

16

a definite value for each incoming bit, either a 0 or 1. Soft decision decoders take a bit

stream that adds an character representing an unknown bit when a bit cannot be determined

a 0 or 1. These soft decision decoders have better performance, but a more complex

algorithm Besides the corrected data, another important output of the decoder is the number

of errors that were successfully corrected. If the error correction ability has been exceeded,

this value is replaced by an error flag.

The MATLAB® language comes with functions that performboth BCH encoding and

decoding. Since the functions are designed for very generalized applications, they were

changed to handle the requirements of this specific system's input and output. The new

functions are faster and optimized for this application.

The information at the data output will be the same as the data which was presented

at the source if the error correcting code was properly implemented. However, during

periods of heavy attenuation and noise, errors are induced that cannot be corrected.

2.2 Adaptive System

The adaptive system includes the decision process which uses the information from

the receiving side of the system The output from this process determines whether to

increase, decrease, or maintain the level of redundancy currently in use. Two different

algorithms for making this decision are examined.

2.2.1 Statistical Adaptive Decision Method

The statistical method of estimating the channel examines the incoming signal and

17

-12

-14

-16

-18

Rayleigh Channel
Channel Estimation

i _j_

100 200 300 400
Blocks

SNR = 8dB

500 600 700

Figure 4. Statistical Adaptive Decision Method

performs statistical calculations using the signal mean (mx), and the 2nd and 4th moments

(E2,E4) to find the signal level (m) after the channel fading. This computational method can

be visualized as finding the new location of the 0 and 1 peaks in the probability distribution

function (PDF) [2]. The equations below were implemented in MATLAB®.

^2 4 = [(x~mx) p(x)dx (2.1)

(2.2)

Figure 4 shows the Rayleigh channel and the estimation given by the statistical system It

is noted that the estimate deviates from the actual value during periods of high attenuation.

This is due to the failure of the statistical estimator. Increasing amounts of uncertainty exist

18

when attenuation is high or when the SNR is low.

In order to adapt the coding in this first method, the system takes this estimated value

of the channel conditions and enters a look-up table. This table lists what code is appropriate

for a range of estimated conditions. This look-up table is generated by noting the dB level

at which the BEP of each code crosses 10"4 in simulation. The BEP of 10"4 was arbitrarily

chosen to represent a minimum acceptable error probability in voice transmissions.

2.2.2 Error Based Adaptive Decision Method

The second method's results show in Figure 5 the system reacting to the number of

corrected errors per block. The error count output from the decoder varies with the

attenuation of the Rayleigh channel. Instead of calculating a statistical value describing the

15

r.1 i iff ■"""■»

4

2

0

-2

-4

-6

-8

-10

-12

-14

-16

-18

100 200 300

Maximum Correction Level
Corrected Errors

--
•

\

-

\
\
\ 1

\ !

/
/

-

1 1

400

100 200 300 400
Blocks

SNR = 8 dB

Jl IUJJU

500 600 700

\ /
\ /

\ /

t '

i j
ij
ii

500 600 700

Figure 5. Error-Based Adaptive Decision Method

19

current channel, this decision algorithm looks at the errors corrected within the current block

and compares this number to the current code's maximum correction capability. If the

decoder corrected more than the upper threshold (75% of the maximum capability) for the

current code (e.g., 5 errors when the code can only correct 6), the decision device will shift

to a code with more redundancy. If the number of errors is below the lower threshold (25%

of the maximum capability) the system will decrease the next code's redundancy.

In both Figures 4 and 5, the solid line in the upper block shows the maximum

correction capability of the code used for each block. This changing level is an indicator of

the working adaptive process. Higher levels of coding reduce the code's efficiency. It is

noted that there is a large difference in coding efficiency between these two different

methods. The error evaluation method changes due to the code's response to fading, and

thus tightly fits the occurring errors. The statistical method tries to match an uncertain

estimation of real world conditions to numbers found from a formula. The inherent

differences between these values drive the system to less efficient behavior.

To communicate each adaptation decision, a message is sent via a low bandwidth

feedback channel to the encoder. If small bursts of noise are creating excessive level

changes, a smoothing factor can be added so that decisions are made from an average of

multiple blocks. This reduction of changes reduces the load on the feedback channel, which

may be limited in capacity by design constraints. During simulation, this feedback channel

was assumed to be error-free and without delay. This allows necessary information about

coding changes to be implemented before the next block is coded at the transmitter.

20

3. Procedure

In order to achieve the final working simulation of the entire adaptive system,

individual sub-systems were developed and validated. Once each sub-system was checked,

it was incorporated into the final system

3.1 Simulation Technique

A Monte-Carlo approach was used for all simulations. This method works by

sending data through the system until a statistically significant number of random events

occur. The random events observed in communication simulations are transmission errors.

As a greater amount of events occur, the probability of occurrence can be calculated with

higher accuracy. The bit error probability (BEP) is calculated by dividing the total number

of errors by the total number of bits that have be sent through the system The problem with

this method is that for very low error probabilities it takes a very long time to simulate. For

example, six Pentium II - 350 MHz computers calculated error probabilities, continuously

for twelve days and did not finish. These computers had to be stopped, and then restarted

where they had left off. The excellent fit of data to expected values validates the correct

output of the sub-systems. However, when data did not fit the expected results, various

problems with the design were corrected.

3.2 Output Validation

To ensure that the simulation of the system was operating properly, the output of each

21

10

10-'

.... ..,, I

10

'~4>J _-G

ba
bi

lit
y

(P
 c

i

E
rr

or
 P

ro
 c

i

B 'u

..n"6

10

in"7

10

\
5

SNR (dB)

Figure 6. BPSK Waveform and AWGN

10 15

subsystem was checked against well-established equations. The data collected from Monte-

Carlo simulations was plotted generating the "waterfall" curves of error probability (BEP)

vs. signal to noise ratio (SNR) shown in Figures 6 through 8.

For a BPSK waveform in the presence of varying levels of AWGN, the expected

probability of error (Pe) curve follows the function below and the graph comparing the

experimental data to the closed form solution is shown in Figure 6 [7].

P = erfc (3.1)

10

10

3 a
o 10

10

10

.*, *:

* Experimental Data
 Expected Curve

10 15 20 25 30 35
SNR (dB)

40

22

Figure 7. Rayleigh Channel and AWGN

The error probability of a BPSK signal in a Rayleigh fading channel (Pr) was tested

in response to varying noise levels (SNR). The function plotted in Figure 7 has the form for

a signal diversity of 1 (L=l), which simplifies greatly the generalized function below [5].

k=0

(L-\ + k\
[!(1 + M)f

P =
y,

i+y<
Y c = mean SNR

(3.2)

(33)

Finally, the hard decoded BCH error curves (PJ were plotted in Figure 8 against

established error upper bound curves (Pub) for comparison [6,8] • The equation used is stated

below in Eq. 3.4. One curve is generated for each of the 11 valid (n,k) BCH code pairs of

10

• o• • • Experimental Data
 Upper Bounds

SNR(dB)

Figure 8. Family of BCH Codes: Length 63

23

length «=63. It is noted that the experimental data approaches the bounds at lower error

rates.

A<^=ixf"V+ey'(i-/>r1
i=«+lV J

(3.4)

(
p = erfc

n N.
o J

n = block length

k = information length

d = minimum distance (Hamming)

These three figures (Figures 6-8) show that each system is properly implemented and

outputting valid simulation results.

24

3.3 Experimental Results

Initially, the first simulations of the system used a non-realistic channel operating at

a SNR 5 decibels higher than during final simulations. For this type of channel, the first

decision method (statistical estimation) performed better. But once a realistic Rayleigh

channel was implemented, the estimator's loss in performance forced the use of a second

method. These two methods are contrasted through simulation.

The criteria used to compare the coding methods include efficiency, BEP, and a

performance metric. Efficiency (r|) is the total amount of information bits transmitted

divided by the total number of bits in blocks (total number of blocks times 63). The bit error

8 10 12
SNR (dB)

Figure 9. Efficiency (r|) vs. SNR

25

probability (BEP) is the number of information bits received in error after decoding and

correction, divided by the total number of bits of transmitted information. The performance

metric(xF) allows both parameters to be combined and analyzed on the same graph.

W = -logw(BE?)-r1% (3.5)

Figures 9 through 11 show the performance of both types of adaptive systems while

changing the level of the AWGN encountered at the receiver, thus varying the SNR.

Examples of the minimum and maximum levels of fixed coding are shown for reference.

The BCH codes used for this simulation have a range of Eb/No in which they operate most

efficiently. For the length 63 family of BCH codes, this range extends upward from -0.7 dB

IU I I I I I i ~I T '1

Statistic Method
Error Method

 Min Coding
1U

XX. '*-■■««. ^"""""-—^^

Max Coding
StatB
ErrB

< V

■ ■ • o- ■ •

Uncoded BPSK
m"2

10"°
\ \ '•'.'■••.

\ \

\
\
\
^

io-4

in"5

V
V
V

V

V
\\
\

i i i i V i

\

'x' ■,
X;.

X-.
'v.

'•••.. X.
1' • ■. =s".

_,—0—, ' '"••H
0 2 4 6 8 10 12

SNR (dB)
14 16 18 20

Figure 10. BEP vs. SNR

26

at a BEP of 10'4. Both methods would perform better if the BCH codes could be extended

to operate in a lower dB range.

The major problem encountered was that the BEP at low Eb/No was unacceptable,

often approaching 101. Rayleigh attenuation in addition to the large amounts of AWGN

creates a quickly changing wireless environment. The adaptive system does not provide any

benefit when encountering such conditions.

Two types of errors exist in this simulation: threshold errors and transition errors.

Threshold errors occur when too many errors occur for the maximum level of redundancy.

This occurs with fades below -5dB or during smaller fades when noise levels are high The

inability of the system to adjust quickly creates a transition error. The current code is then

5000

4500 -

4000

3500

3000

~i r

Statistic Method
Error Method
Min Coding
Max Coding
StatB
ErrB
Uncoded BPSK

■h-

10 12
SNR (dB)

Figure 11. Metric vs. SNR

27

caught using less redundancy than necessary for the errors encountered. Both methods have

a limitation as to how quickly they can react to a changing channel. They both only change

one coding level at a time. Therefore, this simulation system is designed for slowly varying

channels.

The Type B systems shown in the three figures above are attempts to improve the

performance of the original adaptive systems. For "Stat B," the different levels in the look-

up table were all shifted by a constant of -2.5 dB. This was an attempt to increase the

system's efficiency and metric. In "Error B," the upper threshold level was moved from75%

to 50% of the maximum correction ability. This was an attempt to improve the adaptation

response and reduce the system's BEP.

28

4. Conclusions

The goal of this research was to develop and implement an adaptive system that could

efficiently and effectively balance throughput and data integrity. Overall, the statistical and

error based adaptive methods show benefits compared to fixed coding, but the metric

demonstrates the error evaluation method to be superior over a wide range of SNR. From

10 dB to 15 dB this adaptive system maintains a 32% gain over minimum fixed encoding.

This method is only surpassed by the statistical type B method at very low SNR.

The benefits of this error-based decision method include simplicity and ruggedness.

The adaptation decision is made from existing BCH decoder outputs and does not rely on

further signal analysis, which makes the system simpler. The statistical method shows

considerable problems, creating a channel estimate in severe conditions and giving higher

than expected values. The efficiency is therefore increased at these low SNR levels, giving

this method better metric values than the error method. The error method is rugged since

severe noise and attenuation do not seriously affect the system's decision-making ability.

The current problem with the error system is its lag in responding to quick changes of the

channel, which lead to transition errors. This lag is due to the fact the redundancy is changed

after evaluating the performance of the last block received, always keeping the system one

block behind the current conditions.

The two Type B systems show that performance of the original designs can be

modified in order to enhance certain characteristics. In future investigations, the

performance needs to be maximized for the requirements of specific applications and then-

operational levels of SNR.

29

4.1 Challenges

A few difficulties were encountered while working on this project. Much time at the

beginning of the project was spent getting the system designed and programmed properly.

MATLAB® commands and the proper construction of a communications simulation had to

be learned. The mathematics used in encoding and decoding BCH codes are very specialized

and are extremely complex; these procedures took patience and diligence to understand.

Once the system was first operational, the most noticeable problem encountered was with

the decoder. When the error levels exceeded the code's capability, the encoder sent out

unreliable information about the number of errors that were corrected. The error adaptation

method then reduced the level of redundancy, further worsening the problem, causing

catastrophic failure of the system To correct this output, the core decoder function was

modified to produce the proper output.

4.2 Future Work

With greater amount of time to complete further research, many related problems

could be investigated. Keeping the system as designed, optimal parameters for the error

evaluation system could be found. Another performance enhancement that could be

implemented is the ability to adapt between codes more than one level apart.

The addition of other types of codes (Reed Solomon, Convolutional or Turbo) may

lead to gain in system performance. Also an automatic request for repeat (ARQ) system

could be implemented when the capability of the BCH code is exceeded and threshold errors

30

are occurring. This would ensure a much lower probability of error than shown in this

simulation.

4.3 Future Applications

The implementation of this system in hardware is the next major application of this

research. This could be done with Digital Signal Processors (DSP) or programmable gate

arrays. It would be beneficial to see the entire system working outside of computer

simulations. The low cost of modern hardware to perform the tasks of coding and adapting

could make the computational overhead associated with such a system worthwhile.

With additional improvements, this adaptive system could be incorporated into

innovative communication systems. Two such systems include a satellite link with rain

attenuation or ship-to-ship data links in the Navy [4].

31

References

[I] Benice, R. J. "Adaptive Modulation and Error Control Techniques." IBM
Corporation, 1966.

[2] Cress, D. E. and Ebel, W. J. 'Turbo Code Implementation Issues for Low Latency,
Low Power Applications." Proceedings of the MPRG Symposium on Wireless Personal
Communications, June 10-12, 1998.

[3] Farrell, P.G. "Coding for Noisy Data Links.' Ph. D. dissertation. University of
Cambridge, 1969.

[4] Ha, Tre. Digital Satellite Communications. New York: Macmillan Publishing
Company, 1986.

[5] Lidl, Rudolf. Introduction to Finite Fields and Their Applications. Cambridge:
Cambridge University Press, 1994.

[6] Lin, Shu. Introduction to Error-correcting Codes. Englewood Cliffs: Prentice Hall.
1970.

[7] McFalls, Frank, ATC, USN. Interview by author. Annapolis, Md., October 13, 1998.

[8] Proakis, John G. Digital Communications, Second Edition. McGraw-Hill Book
Company, New York, 1989.

[9] Sklar, Bernard. Digital Communications: Fundamentals and Applications.
Englewood Cliffs: Prentice Hall, 1988.

[10] Stremler, Ferrel G. Communications Systems, Third Edition. New York: Addison-
Wesley Publishing Company, 1990.

[II] Weng, L.G. "Soft and Hard Decoding Performance Comparisons for BCH Codes,"
Proceedings of the International Conference on Communications, 1979.

BCH Code Parameters

Appendix

32

N N K N

7
15

31

63

127

255

4 1
11 1
7 2
5 3
26 1
21 2
16 3
11 5
6 7
57 1
51 2
45 3
39 4
36 5
30 6
24 7
18 10
16 11
10 13
7 15
120 1
113 2
106 3
99 4
92 5
85 6
78 7
71 9
64 10
57 11
50 13
43 14
36 15
29 21
22 23
15 27
8 31

247 1
239 2
231 3
223 4
215 5
207 6

255

511

199 7
191 8
187 9
179 10
171 11
163 12
155 13
147 14
139 15
131 18
123 19
115 21
107 22
99 23
91 25
87 26
79 27
71 29
63 30
55 31
47 42
45 43
37 45
29 47
21 55
13 59
9 63

502 1
493 2
484 3
475 4
466 5
457 6
448 7
439 8
430 9
421 10
412 11
403 12
394 13
385 14
376 15
367 16

511 358 18
349 19
340 20
331 21
322 22
313 23
304 25
295 26
286 27
277 28
268 29
259 30
250 31
241 36
238 37
229 38
220 39
211 41
202 42
193 43
184 45
175 46
166 47
157 51
148 53
139 54
130 55
121 58
112 59
103 61
94 62
85 63
76 85
67 87
58 91
49 93
40 95
31 109
28 111
19 119
10 121

N: code word length; K: message length; T: error-correction capability

33

MATLAB Files

% 'Reall.m'
% Real implementation of Raleigh Channel
% John Waterston
% February 21, 1999
% Trident Scholar Project
%

clear; clc;

%Code Parameters
n=63;
k_list=[7,10,16,18,24,30,36,39,45,51,57]•
t_list=[15,13,ll,10,7,6,5,4,3,2,l] ;

%Initial Parameters

IclZn-l-rvrt-vwv i;„f, »»TV * ., , % SamPles Per bit in the transmission channel
klen-length(k_list); %Number of possible values of K; Limits values of adaption position

%Create Data Source %Prepare for worst case scenario initially

fprintf(1,'\n'); % 0utPut blank line
source_len=1000*input('What is the length of the Data Source(in thousands)' ■).
smooth=mput('What is the smoothing factor wanted? (l=no smoothing): •);
randn('state' 1) ; % Sets Random number generator to in'itial state
source=randn(l, source_len) >0; j."j.uxax state

ttt^tVl'iii t /-,-,• % Pointer to position in the data array
maxlen-ceil source_len/k_list(1)); %Determine the number of blocks for fixed case

%Initia?rr1V(SOU£r-len/k-liSt (klSn) ' ; %R°Unds U*> with ceil function »Initialize Variables

% Errors that are corrected at the receiving end c_errmax=zeros(1,maxien);
c_errmin=zeros(1,maxien);
c_err=zeros(1,maxien);
errorsmax=zeros(1,maxien) ;
errorsmin=zeros(1,maxien) ;
errors=zeros(1,maxien);
errmax=zeros(l,maxien);
errmin=zeros(1,maxien);
err=zeros(1,maxien);
mem=zeros(1,5);
mhat=zeros(1,maxien);
EbNo_est=zeros(1,maxien);
EbNo_avg=zeros(1,maxien);
mem=zeros(1,smooth);
uk=zeros(1,maxien);
ut=zeros(1,maxien);
change=zeros(1,maxien);
change(1)=1;
stop=0;

% Actual errors that occur between trans and recv

% Amount of errors detected by decoding process

% Prepare storage of errors to calculate average

% Values of Estimated SNR
% Average of the SNR occuring over X number of blocks
% Prepare storage of errors to calculate average
% Used values of k <- Information Bits
% Used values of t <- Correction Capability
% Allows for count of level changes
% Change = 1 to trigger change

_-'.,. % Shows when adaptive has stopped
Determine the signal to noise parameters of the Channel
limit=input('Do you want to limit fades below a level? (-5 dB) ')•
EbNo=mput('At what EbNo level (db) do you want to transmit? ')•
G=0 ' '
%G=input('What amplifier gain in DB do you want' ')•
G=10.-(G/10); »Convert from dB
speed=input('What speed(km/hr) parameter do you want to use for the doppler

parameter(5-100)? ') ; "

vc=;c ulmlxlenff U "2*maXlen' ^^ 881' 9600) ' %Raleigh Channel from CDR Welch;
vc_l im=vc ;
for i=l:maxlen

if 10*logl0(vc(i)) < (limit)
vc_lim(i)=10"(limit/10) ;

end
end

tic
pg = bch_gen(n,k_list(1))
m = length(pg) - 1;
b=[];
for 0:k_list(1)-1

% Begin Stopwatch for timing entire process
% Create Systematic Generator Matrix for MAX case

34

end;

,v T=t-nn+il 11 pg); * tmp is remainder of division
[q tmp] = gfdeconv([zeros(1, n- <k_lxst (1)) +D , U , PSTJ -
tmp = [tmp zeros(l, m -length(tmp))];

b=[b; tmp];

gmmax = [b eye(k_list(1))]
% Multiply by the identity matrix

% create Systematic Generator Matrix for MIN case
pg = bch_gen(n,k_list(klen));

m = length(pg) - 1;

^^tmpi^Saeconv^zeros.l, n- <k_list ,klen, , +i, , 1] . pa» ,
tmp = [tmp zeros(1, m -length(tmp))];

b=[b; tmp];

gmmln = [b eye(k_list(klen,,], % Multiply by the identity matrix

% Transmitter transmits at a «n-t-n^ot^^Bit Energy)
% Attenuation of the signal changes the effect ol nois

%sigma=sqrt((A'2*Nb)/(2*EbNo)) Voltage of Noise7
sigma=sqrt(Nb./(2*10.MEbNo/10)));

% Begin outside loop
% Change is non-zero when asking for a change; usually ♦/-
% Define current code parameters

% Create Systematic Generator Matrix for adaptive case

for z=l:maxlen
if change(z) == 1

k=k_list(x) ,-
t=t_list(x);
pg = bch_gen(n,k);
m = length(pg) - 1;
b=[];
f°r[q "tmp] = gfdeconv([zeros(1, n-k+i), 1], pg)!

tmp = [tmp zeros(1, m -length(tmp))];
b=[b;. tmp] ;

gfi [b eye(k)]; % Multiply by the identity matrix

end;

, , , v % Record Current values of k,t
uk(z)=K;
ut(z)=t; % t Data for block from data source
datal=getdata(source,datptr,k, .,,,,,,^,^11)).

datalmin=getdata(source, ((z-D^k.Usttklenn^.^ ter .

datptr=datptr+k;

if (datptr > source_len)&(stop=-0)

stop=z;
end;

codemax = rem(datalmax * gmmax, 2);
codemin = rem(datalmin * gmmm,2);
code = rem(datal * gm,2);

a_codemax=(2*codemax-l).*vc_lim(z);
a_codemin=(2*codemin-l).*vc_lim(z);
a_code=(2*code-l).*vc_lim(z);

noise=sigma*randn(Nb,n);

chanmax= ((a_codemax-ones (l,Nb))'+noise) *G;

chanmin=((a_codemin' *ones (l,Nb)) '«owe) *G'
channel»((a_code'*ones(l,Nb))'+noise)*G;

% Create Scaled PDF Histogram
l=length(channel);
vmax=max(max(channel));
vmin=min(min(channel));
a=511/(vmax-vmin);
hg=zeros(1,512) ;
y=fix((channel-vmin)*a)+l;
step=l/(size(channel,l)*sxze(channel,2)) ;

for i=l:size(channel,1)
for j=l:size(channel,2)

hg(y(i,i))=hg(y(i,j))+step;

% Advance, pointer in data

% Acknowledge end of adaptive transmission

% Encode Data with BCH

% Make BPSK(antipodal) +/- 1 Volt and*Channel

%Create AWGN dependant on EbNo of signal

% Combine Noise and coded data

% Voltage Max in mV
% Voltage Min in mV

% Define Histogram Array and initialize with zeros

35

end

v= vmin:
E= sum(v
m2 =sum(
m4 =sum(

!(vmax-vmin)/511):vmax;
,*hg);
!v-E) .~2.*hg);
;v-E).~4.*hg);

mhat=((3/2)*(m2)~2-(l/2)*m4)~(l/4) ,
%sigma2=sqrt(abs((m2)-mhat(z)A2));
if (3*m2~2>m4) | (m2>mhat~2)

mhat=sum(abs(v).*hg);
end;

% Mean - Expected Value
% Second Moment -
% Fourth Moment

%Noise_est(z)=10*loglO(Nb/(2*sigma2"2)); % in dB
EbNo_est(z)=10*logl0(mhat);
mem(rem(z,smooth)+1)=EbNo_est(z) ,
EbNo_avg(z)=sum(mem)/smooth;

%plot(v,hg);

recvmax=sum(chanmax)>0;
recvmin=sum(chanmin)>0;
recv=sum(channel)>0;

% in dB
% Rotate through memory block
% Calculate current amount of average errors

% Receive Data with an integrator detector

% Decode received signal MAX
[data2max,ccodemax,errmax(z)]=debch3(recvmax.n,k_list(1),t_list(1));
c_errmax(z)=sum(abs(recvmax-ccodemax)); % Receiver Compare
errorsmax(z)=sum(abs(data2max-datalmax)); % Overall Compare

% Decode received signal MIN
[data2min,ccodemin,errmin(z)]=debch3(recvmin,n,k_list(klen),t_list(klen)),
c_errmin(z)=sum(abs(recvmin-ccodemin)); % Receiver Compare
errorsmin(z)=sum(abs(data2min-datalmin)) ; % Overall Compare

% Decode received adaptive signal
[data2 , ccode,err(z)]=debch3(recv, n, k,t);
c_err(z)=sum(abs(recv-ccode));
errors(z)=sum(abs(data2-datal))

%SNR Adaption Method
adj=0; %for 10-4 PE case

x_old=x;

if EbNo_avg(z) >= 6.8 +adj
x=ll;

elseif EbNo_avg(z) >= 5.7 +adj
x=10;

elseif EbNo_avg(z) >= 4.8 +adj
x=9;

elseif EbNo_avg(z) >= 4.0 +adj
x=8;

elseif EbNo_avg(z) >= 3.5 +adj
x=7;

elseif EbNo_avg(z) >= 2.8 +adj
x=6;

elseif EbNo_avg(z) >= 2.0 +adj
x=5;

elseif EbNo_avg(z) >= 1.2 +adj
x=4;

elseif EbNo_avg(z) >= .65 +adj
x=3;

elseif EbNo_avg(z) >= -.3 +adj
x=2;

else
x=l;

end;
if x -= x_old

change(z+1)=1;
end
if mod(z,20) == 0
disp (z) ;

end;
end;
et=toc;

% Receiver Compare (possible in real world)
% Overall Compare (used for evaluation)

% Output number to show progress every 100 blocks

% End Main Loop
% End Stopwatch

36

%Performance Calculation Phase
Nu=sum(uk(l:stop))/(n*stop);
Nu_total=(sum(uk,)/(n*maxlen);
f=diff(10*logl0(vc));

disp(['DATA SHEET / PERF1.M / ', datestr(now,]);

dS II'Efficiency of adaptive code = ■ , num2str (Nu) , ■ The total efficiency =
',num2str(Nu_total)]);
disp(['Total K bits = ' ,num2str (sum(uk))]) ;
disp(f Total T bits = ',num2str(sum(ut))]);

" dispU'The adaptive process transmitted ',num2str(source_len), bits in

''dSa'Tne°number
1rfktimIi

;the code was changed is ', num2str (sumfchange, -1) ' times
overSl'and ',num2str(sum(change(l:stoP))-D ' times while transmitting data]),

disptt'The Average of the channel is ',num2str(sum(yc)/length(vc)), dB and
',num2str(suiti(vc(l:stop))/stop), ' dB before stopping']); ,,.f,, , dB/block
disp(['The Average Rate of the channel is ' , num2str(sumfabs(f /length(f)), dB/block

and .,num2str(sum(abs(f))/(stop-l)),' dB/block before stopping]);
disp(['The number of blocks transmitted with EbNo < -0.3 dB -

' num2str(length(find(vc<-0.3))),' Before stopping =

■'^r^Sil^rii'^Ää'iiiin.l i- ^str (speed,,' km/hr,]>;

tlZtlTTrl^T- Design and Run Function to allow changes after running program.
figure(1)
subplot(3,1,[12 3])
plot(10*logl0(vc_lim,,'r-.',;
hold on;
plot(EbNo_avg, 'g-');
plot(ut,'k-');
axis([l maxien -20 16]);

%?itle"'John Waterston - Trident Project',['reall .m /', datestr (now)]}) ;
xlabel({['Blocks'],['EbNo = ',num2str(EbNo,]},; _
%xlabel({['maxlen=',num2str (maxien, ,' minlen='num2str(minien) _
stop=',num2str(stop)], ['Total K bits = ',num2str(sum(uk)) , ' Total T bits -

' ,num2str (sum(ut))]}, ; .
ylabel(['Channel Attenuation (dB, & Error Correction Level);
legend('Rayleigh Channel','Channel Estimation','Coding Level)

% Efficency and Elapsed Time and Smoothing TEXT , ,
%gtext({['\eta = ',num2str(Nu),' \eta Total»',num2str(Nu total)],[Elapsed
Time=',num2str(et),' Smoothing Factor=',num2str(smooth,]},; .,...,
%gtext(a'\eta = ' , num2str (Nu_total,] , ' Smoothing Factor=',num2str(smooth,]}>;

BEP=',num2str(sum(errorsmin(l:minlen))/(minlen*k_list(klen,,)],['Adaptive
BEP=',num2str(sum(errors(l:stop,,/sum(uk(l:stop,),,' Overall
BEP=',num2str(sum(errors,/sum(uk))]});

%gtext({['The adaptive process transmitted ',num2str(source_len),' bits in
',num2str(stop),' blocks.'],... , ,
% ['The code changed ',num2str(sum(change)-1, , ' times overall and

;-';rS';Sli:.t'-«Ä«i,-»v *> «*
•,num2str(sum(abs(f,,/(stop-l,,,' dB/blk before stopping'],...
% ['The number of blocks transmitted with EbNo < -0.3_
dB=',num2str(length(find(vc<10-(-0.3/10),,,,' Before stopping

^^ne^eed^^^ Whr. The limit was

set at ', num2str(limit, , ' dB.']},;

37

% 'Real2.m'
% Real implementation of Raleigh Channel
% Error Decision process
% John Waterston
% March 19, 1999
% Trident Scholar Project
%

clear; clc;

%Code Parameters
n=63;
k_list=[7,10,16,18,24,3 0,3 6,3 9,45,51,57] ;
t_list=[15,13,ll,10,7,6,5,4,3,2,l];

%Initial Parameters
Nb=4;
klen=length(k_list);
x=l;
%Create Data Source
fprintf(1,'\n');
source_len=1000*input('What is the
smooth=input('What is the smoothing
randn('state' , 1);
source=randn(l,source_len)>0;
datptr=l;
maxlen=ceil(source_len/k_list(1));
minlen=ceil(source_len/k_list(klen)
%Initialize Variables
c_errmax=zeros(1,maxien);
c_errmin=zeros(1,maxien);
c_err=zeros(1,maxien);
errorsmax=zeros(1,maxien);
errorsmin=zeros(1,maxien);
errors=zeros(1,maxien);
errmax=zeros(1,maxien);
errmin=zeros(1,maxien);
err=zeros(1,maxien);
mem=zeros(1,5);
mhat=zeros(1,maxien);
EbNo_est=zeros(1,maxien);
Err_avg=zeros(1,maxien);
mem=zeros(1,smooth);
uk=zeros(1,maxien);
ut=zeros(1,maxien);
change=zeros(1,maxien);
change(1)=1;
stop=0;

% Samples per bit in the transmission channel
% Number of possible values of K;
% Prepare for worst case scenario initially

% Output blank line
length of the Data Source(in thousands)? '),•
factor wanted? (l=no smoothing): ');
% Sets Random number generator to initial state

% Pointer to position in the data array
% Determine the number of blocks for fixed case

) % Rounds up with ceil function

% Errors that are corrected at the receiving end

% Actual errors that occur between trans and recv

% Ammount of errors detected by decoding process

% Prepare storage of errors to calculate average

% Values of Estimated SNR
% Average of the SNR occuring over X # of blocks
% Prepare storage of errors to calculate average
% Used values of k <- Information Bits
% Used values of t <- Correction Capability
% Allows for count of level changes
% Change = 1 to trigger change
% Shows when adaptive has stopped

%Determine the signal to noise parameters of the Channel
limit=input('Do you want to limit fades below a level? (-5 dB) ');
EbNo=input('At what EbNo level (db) do you want to transmit? ');
G=0;
%G=input('What amplifier gain in DB do you want? ');
G=10."(G/10); %Convert from dB
speed=input('What speed(km/hr) parameter do you want to use for the doppler
parameter(5-100)? ');
[vc,len]=varchanl(1.2*maxlen,speed, 881, 9600) ; %Raleigh Channel ((kph), (kHz), baud)
vc=vc(1rmaxlen);
vc_lim=vc;
for i=ltmaxlen

if 10*logl0(vc(i)) < (limit)
vc_lim(i)=10~(limit/10);

end
end

tic

pg = bch_gen(n,k_list(1));
case
m = length(pg) - 1;
b=[];
for i = 0:k_list(1)-1

% Begin Stopwatch for timing entire process

% Create Systematic Generator Matrix for MAX

38

[q, tmp] = gfdeconv([zeros(1, n-(k_list(1))+i), 1], pg); % tmp is remainder of division

tmp = [tmp zeros(1, m -length(tmp))];

b=[b; tmp];
end ;
gmmax = [b eye(k_list(1))]; % Multiply by the identity matrxx
pg = bch_gen(n,k_list(klen)); % Create Systematic Generator Matrix for MIN case

m = length(pg) - 1;
b= [] ;
for i = 0:(k_list(klen)) - 1

[q, tmp] = gfdeconv([zeros(1, n-(k_list(klen))+i), 1], pg) ;
tmp = [tmp zeros(1, m -length(tmp))];
b=[b; tmp];

end ;
gmmin = [b eye(k_list(klen))]; % Multiply by the identity matrxx

% Transmitter transmits at a constant Ec/No(Channel Bit Energy)
% Attenuation of the signal changes the effect of noise level.
%sigma=sqrt((A"2*Nb)/(2*EbNo))
sigma=sqrt(Nb./(2*10."(EbNo/10))); % RMS Voltage of Noise7

for z=l:maxlen % Begin outside loop
if change(z) ==1 % Change is non-zero when asking for a change;

k=k_list(x); % Define current code parameters

t=t_list(x);
pg = bch_gen(n,k); % Create Systematic Generator Matrix for adaptive case

m = length(pg) - 1;
b=[];
for i = 0:k - 1

[q, tmp] = gfdeconv([zeros(1, n-k+i), 1], pg) ;
tmp = [tmp zeros(l, m -length(tmp))];
b=[b; tmp];

end ;
gm = [b eye(k)]; % Multiply by the identity matrix

end;

uk(z)=k; * Record Current values of k,t

ut(z)=t;

datal=getdata(source,datptr, k); % Get Data for block from data source
datalmax=getdata(source,((z-1)*k_list(1))+1,k_list(1));
datalmin=getdata(source,((z-1)*k_list(klen))+1,k_list(klen));

datptr=datptr+k; % Advance pointer in data

if (datptr > source_len)&(stop==0)% Acknowledge end of adaptive transmission

stop=z;
end;

codemax = rem(datalmax * gmmax,2); % Encode Data with BCH
codemin = rem(datalmin * gmmin,2);
code = rem(datal * gm,2);

a_codemax=(2*codemax-l) .*vc_lim(z) ; % Make BPSK (antipodal) +/- 1 Volt * channel

a_codemin= (2 *codemin-l) .*vc_lim(z) ;
a_code=(2*code-l).*vc_lim(z);

noise=sigma*randn(Nb,n); % Create AWGN dependant on EbNo of signal

chanmax=((a_codemax'*ones(l,Nb))'+noise)*G; % Combine Noise and coded data

chanmin=((a_codemin'*ones(l,Nb))'+noise)*G;
channel=((a_code'»ones(l,Nb))'+noise)*G;

recvmax=sum(chanmax)>0; % Receive Data with an integrator type dectector

recvmin=sum(chanmin)>0;
recv=sum(channel)>0;

% Decode received signal MAX
[data2max,ccodemax,errmax(z)]=debch3(recvmax,n,k_list(1),t_list(1));
c_errmax(z)=sum(abs(recvmax-ccodemax)); % Receiver Compare
errorsmax(z)=sum(abs(data2max-datalmax)); % Overall Compare

% Decode received signal MIN
[data2min,ccodemin,errmin(z)]=debch3(recvmin,n,k_list(klen),t_list(klen));
c_errmin(z)=sum(abs(recvmin-ccodemin)) ; % Receiver Compare

39

errorsmin(z)=sum(abs(data2min-datalmin));
% Decode received adaptive signal

[data2,ccode,err(z)]=debch3(recv,n,k,t);
c_err(z)=sum(abs(recv-ccode));
errors(z)=sum(abs(data2-datal));

if err(z) == -1
err(z)= t;

end

% Overall Compare

% Receiver Compare (possible in real world)
% Overall Compare (used for evaluation)

mem(rem(z,smooth)+1)=err(z);

Err_avg(z)=ceil(sum(mem)/smooth);
BEPguess=sum(errors)./sum(uk);

x_old=x;

change(z +1)= 0;
%75%
if Err_avg(z) > .35*t_list(x);

X=X-1;
change(z+1)=1;
if x < 1

x=l;
end

elseif Err_avg(z) < .25*t_list(x);
x=x+l;
change(z+1)=1;
if x > length(k_list)

x=length(k_list);
end

end

% Rotate through memory block replacing old
error values

if mod(z,20) == 0
blocks

disp(z);
disp(BEPguess);

end;

% Output number to show progress every 100

end;
et=toc;

% End Main Loop
% End Stopwatch

datestr(now)]);

1,num2str(Nu), The total efficiency =

bits in ',num2str(stop),'

%Performance Calculation Phase
Nu=sum(uk(1:stop))/(n*stop);
Nu_total=(sum(uk))/(n*maxlen);
f=diff(10*logl0(vc));
clc
disp(['DATA SHEET / PERF1.M / '
disp(' ') ;
disp(['Efficiency of adaptive code
',num2str(Nu_total)]);
disp(['Total K bits = ',num2str(sum(uk))]);
disp(['Total T .bits = ' , num2str (sum(ut))]) ;
disp(['The adaptive process transmitted ',num2str(source_len),
blocks.']);
disp(['The number of times the code was changed is ',num2str(sum(change)-1),' times
overall and ',num2str(sum(change(1:stop))-1) , ' times while transmitting data']);
disp(['The Average of the channel is ',num2str(sum(vc)/length(vc)),' dB and
',num2str(sum(vc(l:stop))/stop),' dB before stopping']);
disp(['The Average Rate of the channel is ' ,num2str(sumfabs(f))/length(f)), ' dB/block and
',num2str(sumfabs(f))/(stop-1)),' dB/block before stopping']);
disp(['The number of blocks transmitted with EbNo < -0.3 dB =
',num2str(length(find(vc<-0.3))),' Before stopping =
' ,num2str(length(find(vc(1:stop)<-0.3)))]);
disp(['The speed used in the Raleigh Channel is ',num2str(speed),' km/hr.']);

^Performance Output Phase
%Process Graphing - Design and Run Function to allow changes after running program.
figure(1)
subplot (3,1, [1 2 3])
%for i=l:maxlen
% if errors(i) -= 0
% stem(i,errors(i) , 'filled');

40

% hold on;
% end ;
% end;
%plot(10*logl0(vc), 'r: ');

plot(10*logl0(vc_lim), 'r- . ');
hold on;
plot(Err_avg,'g.');
plot(ut,'k-');
%plot(err,'d');

axis([l maxien -20 16]);
hold off;

%title({'John Waterston - Trident Project',['reall.m /' , datestr(now)]});
%xlabel({['maxlen=',num2str(maxien),' minlen=',num2str(minien),'
stop=',num2str(stop)],['Total K bits = ',num2str(sum(uk)), ' Total T bits =
',num2str(sum(ut))]}) ;
xlabel({['Blocks'],['EbNo = ' , num2str (EbNo)]}) ;
ylabel(['Channel (dB) & Error Correction Level']);
legend('Rayleigh Channel','Errors Corrected', 'Coding Level')

% Efficency and Elapsed Time and Smoothing TEXT
%gtext({['\eta = ',num2str(Nu),' \eta Total=•,num2str(Nu_total)],['Elapsed
Time=',num2str(et),' Smoothing Factor=',num2str(smooth)]});

% BEP TEXT ,
%gtext({['Max BEP=',num2str(sum(errorsmax(l :maxlen))/(maxlen*k_list(1))) , Mm
BEP=',num2str(sum(errorsmin(l:minlen))/(minlen*k_list(klen)))],['Adaptive
BEP=',num2str(sum(errors(1:stop))/sum(uk(l:stop))) , ' Overall
BEP=',num2str(sum(errors)/sum(uk))]});

%gtext ({ ['The adaptive process transmitted ' ,num2str (source Jen) , ' bits in
',num2str(stop),' blocks.'],...
% ['The code changed ',num2str(sum(change)-1) , ' times overall and
■ ,num2str(sum(change(1:stop))-l), ' times before stopping'],...
% ['The avg EbNo of the channel is ',num2str(sum(10*logl0(vc))/length(vc)),' dB and
' ,num2str(sum(10*logl0(vc(l:stop)))/stop), ' dB before stopping'],...
% ['The avg EbNo Rate of the channel is ',num2str(sum(abs(f))/lengthff)),' dB/blk and

' ,num2str(sum(abs(f))/(stop-1)), ' dB/blk before stopping'],...
% ['The number of blocks transmitted with EbNo < -0.3
dB=',num2str(length(find(vc<10'(-0.3/10)))),' Before stopping
= ',num2str(length(find(vc(l:stop)<10"(-0.3/10))))],
% ['The speed used in the Raleigh Channel is ',num2str(speed),' km/hr. The limit was

set at ', num2str(limit),' dB.']});

41

function [b, a, gN, fd, L, fc] = raychan(vkph, fc, Rs, fs)
% [b, a, gN, fd, L, fc] = raychan(vkph, fc, Rs, fs): Designs a
% channel noise filter to have the normalized doppler frequency fd.
% The inputs are:
% vkph = vehicle velocity in kilometers per hour
% fc = carrier frequency in Khz
% Rs = symbol rate
% fs = samples per symbol
% The vectors b and a contain the direct form filter
% coefficients. A simple fixed-point algorithm is used to
% find an fc value that gives the desired fd. gN is the
% noise scaling factor used to scale the noise variance at
% the filter output to unity via z[n] = sqrt(gN)*y[n].
% by Mark A. Wickert 7/94.

%***
% Begin by convertiing the input parameters to the normalized doppler, fd:
fd = vkph*le3/6CT2/(fs*Rs)*fc*le6/3e8;

% The noise filter cutoff frequency will be very close to fd, but
% at slow vehicle velocity may be too small for filter realization.
% To compensate for this a lower fd cuttoff of 0.02 5 is set. Interpolation
% (upsampling) by the factor L is invoked as needed to keep fc_up >= 0.25.
% This is equivalent to increasing the vehicle velocity by factor L, thus
% the filtered noise sequences must be 'slowed' back down by using an interpolation
% routing such as MATLABs interpK) or the DSP tool box function interp().

% Find fd_up, the upsampled normalized doppler frequency.
L = 1;
fd_up = fd;
while fd_up < 0.02 5,

L = L + 1;
fd_up = L*fd;

end;

%disp('Normalized doppler and upsampled doppler:')

%disp(['fd = ' num2str(fd) ', fd_up = ' num2str(fd_up) ', L = ' num2str(L)])
%disp('Filter cutoff frequency search status:')

% Design the noise filter
%tol '= 0.0005;
tol = .02 * fd_up; % 2% of fd_up tolerance
trials = 1;

% initial guess for fc is just the normalized doppler itself
p 0 = fd_up;
fd_hat = doppler(pO);
% display iteration status at start:
%disp(['trial #' num2str(trials) ', fc_hat = ' num2str(p0) ...
% ', fd_hat = ', num2str(fd_hat) ', error = ' num2str(abs(fd_up-fd_hat))])
p = pO - fd_hat + fd_up;

% search for fc value - no checks for not converging
% included at present.
while abs(p - pO) > tol,

% try a new value
trials = trials + 1;
pO = p;
fd_hat = doppler (pO);

% display iteration status at each trial:
% disp(['trial #' num2str(trials) ', fc_hat = ' num2str(p0) ...
% ', fd_hat = ', num2str(fd_hat) ', error = ' num2str(abs(fd_up-fd_hat))])

p = pO - fd_hat + fd_up;
end;

% Obtain final design filter coefficients
[b,a] = chan_mod(pO,10);
fc = pO;
% Solve for the noise (power) scaling factor
gN = 1/ (2*quad8 (' smomO ' , 0, .5 , [] , [] , b, a)) ;
%*** + ***t******t***H**t******tt**t**Jr******tt**t**i**it*tt*

end;

42

function [rwarm,Zf1,Zf2] = mk_warm(b, a, gN, L, N)
% [rwarm,Zfl,Zf2] = mk_warm(b, a, gN, L, N)
% Used to warm-up the Rayleigh channel
% (i.e. runs enough noise through the filters to get
% past the initial transients)
% b,a Rayleigh filter coefficients from raychan.m
% gN noise scaling factor from raychan.m
% L interpolation factor L from raychan.m
% N = # samples (typically ~ Ns*2000)to get transients out
% rwarm = Rayleigh weights ' _
% Zfl = final condition of the filter for use in mk_wgts.m
% Zf2 = final condition of the filter for use in mk_wgts.m

% find required length of noise vector prior to interpolation

nx = ceil(N/L)+l;

%disp('Generating white sequence....')
% create complex noise vector for input to filter
x = randn(nx,l) + j*randn(nx,1) ,-pause(1)

%disp('Filtering the white sequence ')
% filter and gain scale to unity variance the complex white noise

[x,Zfl] = filter(b,a,x);
x=x*sqrt(gN/2); _
%disp ('Upsampling using linear interpolation.)
% Begin by placing L-l zeros between each point of x

ny = L*nx;
rwarm = zeros(l,ny);
rwarm(l:L:ny) = x;
% Now filter with h[n] = 1 - |n|/L for |n| <= L-l
nh = (1:L)/L;
h = [nh fliplr(nh(l:L-l))];
[rwarm,Zf2] = filter(h,1,rwarm);
% trim length for non integer N/L values
rwarm = rwarm(1:fix(N));

43

function [rw,Zfl,Zf2] =mk_wgtsl(b, a, gN, L, N, zfl, zf2)
% [rw,Zfl,Zf2] = mk_wgtsl(b, a, gN, L, N, zfl, zf2)
% Creates a complex vector of length N containing Rayleigh
% channel weights for the channel noise filter
% coefficients b and a and interpolation factor L.
% Zfl & Zf2 are the final filter states originally from mk_warm.m
% The variance of yy = {wl + j wQ} is one,
% thus in a comm channel application no additional scaling
% by sqrt(2) is required.
% by Mark Wickert 8/94.

% find required length of noise vector prior to interpolation
%nx = ceil(N/L) +1;
nx = round(N/L);

%disp('Generating Rayleigh channel weights....')
% create complex noise vector for input to filter
x = randn(nx,l) + j*randn(nx,1);

% filter and gain scale to unity variance the complex white noise
[x,Zfl] = filter(b,a,x,zfl);
x=x*sqrt(gN/2);

% Begin by placing L-l zeros between each point of x
ny = L*nx;
rw = zeros(1,ny);
rw(l:L:ny) = x;
clear x

% Now filter with h[n] = 1 - |n|/L for |n| <= L-l
nh = (1:L)/L;
h = [nh fliplr(nh(l:L-l))];
clear nh
[rw,Zf2] = filter(h,l,rw,zf2);

% trim length for non integer N/L values
%rw = rw(l:N);

44

function fd=doppler(fc)

% fd = doppler(fc): returns the normalized doppler frequency
% for an input filter cutoff frequency, fc. Filter parameters
% are fixed at 10 dB ripple using the function chan_mod.m. Numerical
% integration is performed using the MATLAB function quad8().
% by Mark A. Wickert 7/94.

[b,a]=chan_mod(fc,10);

fd=sqrt(2*quad8('smom2 ' ,0, .5, [] , [] ,b, a) /quad8 (' smomO ' , 0, .5, [] , [] ,b, a) ;

end;

function 12 = smom2(F, b, a)

% 12 = smom2(F, b, a): Produces a frequency response
% magnitude vector times f*2 corresponding to
% frequency values in F. This form is suitable for use
% with the numerical integration formula quad8().
% by Mark A. Wickert 7/94.

W = 2*pi*F;
12 = freqz (b, a, W) ;
12 = (abs(I2) ."2) .*(F."2) ;
end;

45

function bch_pg = bch_gen(n,k)
%returns generator polynomial for the bch code with length n and data k.
%little error trapping and correction is implemented
%using MATLAB's Comm library GF(2'm) functions.
%John Waterston - USNA '99
%24 SEP 98

%create primitive polynomial for GF(2'm)
dim = ceil(log2(n));
m = gfprimdf(dim);
%compute minimum polynomial
if k == n - dim

%trivial case where primitive poly is generator poly
bch_pg = m;

else
%generate cyclotomic cosets and use to create min poly's
cs = gfcosets(dim);
[n_cs, m_cs] = size(cs);
pi = gfminpol(cs(2:n_cs,1),m); %does multiplication

n_terms = 0;
n_i = 0;
pm= [];
while ((n_terms < (n-k)) & (n_i+l < n_cs))

n_i = n_i + 1;
n_terms = n_terms + sum(~isnan(cs(n_i+l,:)));
pm = [pm; pl(n_i, :)];

end ;

bch_pg = gftrunc(pm(l,:));
[n_pm, m_pm] = size(pm);
if n_pm > 1

for i = 2 : n_pm
bch_pg = gfconv(bch_pg, gftrunc(pm(i, :))) ; %multiplies the min poly's

end;
end;

end;

%end of bch_gen.m

46

function [msg,ccode,err]=debch3(rec_code,n, k, t);

% debch - Decodes a block of data that is BCH encoded
% John Waterston
% October 20, 1998
%

[n_code, m_code] = size(rec_code);
dim = ceil(log2(m_code));

ord = gfprimdf(dim); %the complete list of all element in GF(2Mim)
tp = gftuple([-l:m_code- 1]', ord);

%Initialize error vector at the very beginning
err = zeros(n_code,1);
msg = zeros(n_code,k);
ccode = zeros(n_code,m_code);

for n_i = l:n_code %passes each row to core, one at a time.
%profile johncore
[msg(n_i,:>, err(n_i), ccode(n_i, :)]=...

johncore(rec_code(n_i,:), m_code, dim, k, t, tp) ;
%profile report, profile done
%break

end;

47

function [msg, err, ccode] = johncore(code, pow_dim, dim, k, t, tp)

tp_num = tp * 2.~[0:dim-l]';
tp_inv(tp_num+l) = 0:pow_dim;
% syndrome computation.
% initialization, find all non-zeros to do the calculation
non_zero_itm = find(code > 0) - 1;
len_non_z_itm = length(non_zero_itm);
syndrome = -ones(l, 2*t);

% syndrome number is 2*t where t is error correction capability
if len_non_z_itm > 0

tmp = l:2*t;
syndrome(tmp) = non_zero_itm(l) * tmp;
if len_non_z_itm > 1

for n_k = 2 : len_non_z_itm
syndrome(tmp) = gfplus(syndrome(tmp), non_zero_itm(n_k) * tmp, tp_num,

tp_inv);
end;

end;
end;
% complete syndrome computation

% Determine the error-location polynomial.
%profile jwwelocp
[sigma, err] = jwwelocp(syndrome, t, tp, pow_dim, 0);
%profile report, profile done

% computation of error-location numbers.
loc_err = zeros(1, pow_dim);

% in case of failed or no error, skip.
num_err = length(sigma) - 1;
if (-err) & (num_err > 0)

cnt_err = 0;
pos_err = [];
er_i = 0;
while (cnt_err < num_err) & (er_i < pow_dim * dim)

test_flag = sigma(l);
for er_j = 1 : num_err

if sigma(er_j +1) >= 0
% The following 6 lines is equivelent to
% tmp = gfmul(er_i * er_j, sigma(er_j+l), tp);
tmp = er_i * er_j ;
if (tmp < 0) | (sigma(er_j+l) < 0)

tmp = -1;
else

tmp = rem(tmp + sigma(er_J + 1), pow_dim);
end;
test_flag = gfplus(test_flag, tmp, tp_num, tp_inv);

end;
end;
if test_flag < 0

cnt_err = cnt_err + 1;
pos_err = [pos_err, rem(pow_dim-er_i, pow_dim)];

end;
er_i = er_i + 1;

end;
pos_err = rem(pow_dim+pos_err, pow_dim);
pos_err = pos_err + 1; % shift one location because power zero is one.
loc_err(pos_err) = ones(1, cnt_err);
err = num_err;

else
if err

err = -1;
end;

end;
% completed error location detection

% correct the error
ccode = rem(code + loc_err, 2);
msg = ccode(pow_dim-k+l : pow_dim);
%-- end of johncore

48

function [sigma, err] = jwwelocp(syndrome, t, tp, pow_dim, err)
%John Waterston - USNA '99
%2 October 1998

[tp_n, tp_m] = size(tp);
tp_num = tp * 2.'[0 : tp_m-l]';
tp__inv(tp_num+l) = 0:pow_dim;

% use simplified algorithm
mu = [-1/2,. 0:t] ' ;
sigma_mu = [zeros(t+2,1), -ones(t+2, t)];
d_mu = [0; syndrome(1); zeros(t, 1)];
l_mu =[0 0 2* (l:t)] ';
mu2_l_mu = 2*mu - l_mu;
% iterative start with row three. The first two rows are filled.

for de_i = 3:t+2
% no more effort to failed situation
if (d_mu(de_i - 1) < 0) | err

sigma_mu(de_i, :) = sigma_mu(de_i-l, :);
else

% find another row proceeding to row de_i -1
% d_mu equals to zero
% and 2*mu - l_mu is the largest.
indx = find(d_mu(l:de_i - 2) >= 0);
rho = find(mu2_l_mu(indx) == max(mu2_l_mu(indx)));
rho = indx(rho(length(rho)));

% by (6.28)
% shifted = gfmul(d_mu(de_i - 1), pow_dim - d_mu(rho), tp) ;
% shifted = gfmul(shifted, sigma_mu(rho, :), tp)';
% multiply inreplace the above two lines.
shifted = -ones(l, t + 1);
if (d_mu(de_i - 1) >= 0) & (pow_dim - d_mu(rho) >= 0)

tmp = rem(pow_dim - d_mu(rho) + d_mu(de_i -1), pow_dim);
indx = find(sigma_mu(rho, :) >= 0);
for de_k = 1 : length(indx)

shifted (indx (de_k)) = rem(tmp + sigma_mu (rho, mdx(de_k)), pow_dim) ;

end;
end;
% end multiply

shifting = (mu(de_i - 1) - mu(rho)) * 2;

% calculate new sigma_mu
%if ~isempty(find(sigma_mu(l:de_i-2,max(l,t-shifting+2):t+l) >-0))

% disp('A potential for error is posible')
% disp(['de_i=',num2str(de_i), ' shifting=',num2str(shifting)]);
% disp(sigma_mu)
% disp(['shifted=',mat2str(shifted)]);

ifn-isempty(find(shifted(max(t-shifting+2, 1) : t+1) >= 0)Impossibly not needed- jww
% more than t errors, BCH code fails.
err = 1;

else
% calculate the new sigma
shifted = [-ones(l, shifting) shifted(l:t-shifting+1)];
sigma_mu(de_i, :) = gfplus(sigma_mu(de_i-l,:), shifted, tp_num, tp.inv);

end;
end ;
l_mu(de_i) = max(find(sigma_mu(de_i,:) >= 0)) - 1;

% calculate d_mu. It is not necessary to do so if mu(de_i) == t
if de_i < t+2

% the constant term
d_mu(de_i) = syndrome(mu(de_i) * 2 + 1);
indx = find(sigma_mu(de_i, 2:t) >= 0);

for de_j = 1 : length(indx)
de_j_tmp = indx(de_j);
% Before the "end", it is equivalent to
% d_mu(de_i) = gfadd(d_mu(de_i), ...
% gfmul (sigmajtiu (de_i, de_j_tmp+l) , ...

49

% syndrome(mu(de_i) * 2 - de_j_tmp + 1), tp), tp) ;
tmp = syndrome(mu(de_i) * 2 - de_j_tmp + 1) ;
if (tmp < 0) | (sigma_mu(de_i, de_j_tmp +1) < 0)

tmp = -1;
else

tmp = rem(tmp + sigma_mu(de_i, de_j_tmp + 1), pow_dim);
end;
d_mu(de_i) = gfplus(d_mu(de_i), tmp, tp_num, tp_inv);

end;
end;

% calculate 2*mu-l_mu
mu2_l_mu(de_i) = mu(de_i) * 2 - l_mu(de_i);

end;

% the error polynomial
sigma = sigma_mu(t+2, :);
% truncate the redudancy
indx = find(sigma >= 0);
sigma = sigmafl:max(indx));
% completed constructing error polynomial

%-- end of errlocp(jww) --

50

%BPSKCAL.m
^Generates the BPSK output and expected waterfall graph
%John Waterston - Trident Project
%October 7, 1998

EbNo=-5:l:12;
%in DB

semilogy(EbNo,commq(sqrt(2*10.-(EbNo/10)))); %plot and compute Pe

grid
ylabel('P_e') ;
xlabel('E_b/N_o (dB) ') ;
%title('BPSK Signal');
axis([-5 15 le-8 1]) ;
hold on;

EbNo = linspace(.5,11,10) ;
N_bits=10000;
Nb=4;
BEP=zeros(l,length(EbNo));

for i = 1:length(EbNo)
errors=0;
loop=0;
tic
pe=commq(sqrt(EbNo(i)));
while (N_bits*loop) < (10000/pe)

loop=loop+l;
sigma=sqrt(Nb/(2*EbNo(i)));
data=(randn(l,N_bits)>0);
a_data=data*2-l;
noise=sigma*randn(Nb,N_bits);
channel=(a_data'*ones(l,Nb))'+noise;
recv=sum(channel)>0;
errors=errors+sum(abs(data-recv));
BEP(i)=errors/(N_bits*loop);

end

fprintfd, '%5g %12g %12.10f %5g \n',errors,loop*N_bits,BEP(i),t)
%plot(10*logl0(EbNo(i)),BEP, 'rd');

end
plot(10*logl0(EbNo),BEP, 'rd');
legend('Expected Curve','Experimental Data');
hold off;

51

% 'bchbnd2.ni'
% BCH comparison to bounds
% BPSK vs. BCH of various (n,k)
% John Waterston
% Trident Project
% February 26, 1999
% This creates a BCH matrix with the BEP (-4 dB to 9 dB) for all 11 63 codes

%Code Parameters
n=63;
k_list=[7,io,16,18,24,3 0,3 6,3 9,45,51,57] ;
t_list=[15,13,11,10,7,6,5,4,3,2,1] ;

a=input('What code do you want to simulate? (1-11) ') ;
bl=input('What dB do you wish to begin at? ') ;
b2=input('What dB do you wish to end at? ') ;

EbNo=-4:1:9; % This creates the general matrix for all to use.
BEP=zeros(length(k_list),length(EbNo));
tloop=zeros(length(k_list),length(EbNo));
errors=zeros(length(k_list),length(EbNo));
load bnd
for code=a:a; %length(k_list):-l:5;

fn=['tst',num2str(a)]
k=k_list(code);
t=t_list(code);
N_bits=500*n; % do not change values...
K_bits=5 00*k;
Nb=4;

pg = bch_gen(n,k);
m = length(pg) - 1;
b=[];
for i = 0:k - 1

[q, tmp] = gfdeconv([zeros(1, n-k+i), 1], pg); % tmp is remainder of division
tmp = [tmp zeros(l, m -length(tmp))];
b=[b; trapp-

end;
gm = [b eye(k)] ;

for i = find(EbNo == bl):find(EbNo == b2) % Eb is for channel bits
loop=0;
tic
while ((loop*K_bits) < fix(1000/(Pb(code,i))))

loop=loop+l;
sigma=sqrt (Nb/ (2*10' (EbNo (i) /10))) ; % RMS Voltage of Noise
datal_v=(randn(l,K_bits)>0); % Generate Random Data
datal_m = vec2mat(datal_v, k) ;
codel = rem(datal_m * gm, 2); % Encode Data with BCH
codel=codel';codel=codel(:)'; % Matrix to Vector
a_code=(2*codel-l); % Make BPSK
noise=sigma*randn(Nb,N_bits); % AWGN
channel=(a_code'*ones(l,Nb))'+noise;
recv=sum(channel)>0;
recv=vec2mat(recv, n);
data2_m=debch(recv,n,k,t); % Decode recv
data2_m=data2_m';
data2_v=data2_m(:)';
errors(code,i)=errors(code,i)+sum(abs(datal_v- data2_v));

end
e_time=toc;
tloop(code,i)=loop;
BEP(code,i)=errors(code,i)/(K_bits*loop);
fprintfd, '%5g %12g %12.10f %5g %5g \n\...

errors(code,i),loop*K_bits,BEP(code,i),e_time,EbNo(i));
zl=['BEP'];
z2=['tloop'];
z3=['errors'] ;
z4=['code'];
save(fn,zl,z2,z3,z4) ;

end;
end;

52

% 'Raycal.m'
% Raleigh Channel calibration
% John Waterston
% February 22, 1999
% Trident Scholar Project
%

%clear;
clc;

Nb=4;

loop=l;
len=5 0000;
errors=zeros(1,11),
z=zeros(1,11);

% Samples per bit in the transmission channel

tic
N_bits=len*1.2;
randn('state',0);
[b,a,gN,Fd,L,fc]=raychan(3 0,881,2 4 00,D ;

for EbNo=0:3.5:35;
[ray_wgts,Zfl,Zf2]=mk_warm(b,a,gN,L,N_bits+2000);
while errors(loop) < fix(-12500*logl0(1/(4*EbNo)))

[ray_wgts,Zf1,Zf2]=mk_wgtsl(b,a,gN,L,N_bits,Zf1,Zf2)
vc=abs(ray_wgts(l:len));
len=length(vc);
data=randn(1,len)>0;
a_code=(2*data-l). *vc;
sigma=sqrt(Nb/(2*1CT (EbNo/10)));

of Noise
noise=sigma*randn(Nb,len);

Create AWGN dependant on EbNo of signal
channel=((a_code'*ones(l,Nb))'+noise);

Raleigh
recv=sum(channel)>0;
errors(loop)=errors(loop)+sum(abs(recv-data));

evaluation and analysis)
z(loop)=z(loop)+1;

end
loop=loop+l;
disp(loop-1);

end
et=toc;

EbNo=0:3.5:42;
BEP=errors./(len.*z);
BPSK=0.5*(l-sqrt((10."(EbNo./10))./(1+10.*(EbNo./10))));

% From Proakis p.781 diversity=l

% RMS Voltage

% Multiplies by

% Overall Compare (used for

% End Stopwatch

^Performance Calculation Phase
disp(['DATA SHEET / raycal.m /
disp (' ') ;
^Performance Output Phase

datestr(now)]),

figure(1)
subplot(3,1,[1 2 3])
%semilogy(EbNo(1:11),BEP(1:11);
semilogy(EbNo,BPSK,'b-',EbNo(1:11),BEP,'rd');
legend('Expected Curve (BPSK)','Experimental Data');
grid;
axis([0 40 le-4 1]);
%title({'John Waterston - Trident Project',['raycal.m /',datestr(now)J))
xlabel('E_b/N_o');
ylabel('P_r');

53

% 'dat_edit.m'
% Edit BCH data files
% John Waterston
% 1/29/99
%

clear; clc;

n=63;
k_list=[7,10,16,18,2 4,3 0,3 6,3 9,45,51,57] ;
t_list=[15,13,ll,10,7,6,5,4,3,2,l] ;

%Code Parameters

EbNo_base=-4:1:9; % Base Matrix

disp('Data Editor for the BCH (63,K) family of codes');
disp('Written by John Waterston 2/11/99 for Trident Project');

a=0;
while a >= 0

disp (' ') ;
a=input('Do you want to combine new [0] data files [-1] to end? ') ;
disp (' ') ;
if a==0

% Take Data from new data file
what
a=input('What tst?.mat file do you wish to load? (Enter value of CODE(l-ll)) ','s')

%b=num2str(t_list(find(k_list==str2num(a)))) ;
%c=input(' (Other file apnds) ' , ' s ') ;

fname=['tst',a, ' .mat'];
load(fname);
disp(['File ',fname,' has been loaded...']);
disp(['The data runs from ',num2str(EbNo_base(1)),' to

',num2str(EbNo_base(length(EbNo_base))),' dB']);
disp(['Incremented by ',num2str(EbNo_base(2)-EbNo_base(1)),' dB steps.']);

disp(' ') ;
d=input('Do you wish to combine this data with the master BCH data? [l]=yes [0]=no

')
if d > 0

load master
for i=l:length(EbNo_base)

code=str2num(a);
master_err(code,i)=master_err(code,i)terrors(code,i);
master_bits(code,i)=master_bits(code,i)+(tloop(code,i).*k_list(code)*500);
if master_bits(code,i) -= 0

master_BCH(code,i)=master_err(code,i)/master_bits(code,i);
end
save master master_BCH master_bits master_err

end
end

end
end

disp('End of Session');

54

%
% rdatprint2.m'
% John Waterston
% This prints the current data for the 63 family of codes.

% 1/29/99
%

clear;
clc;

n=63 ;
k_list=[7,10,16,18,24,30,36,39,45,51,57];
t_list=[15,13,ll,10,7,6,5,4,3,2,l];

disp('BCH code printer')
disp('Written by John Waterston');
disp('for Trident Project on March 2, 1999');
disp (' ') ;

a=input('Enter (1) for channel bits (2) for info bits (3) for metric: ');

b=0; c=[];
while b>=0 & b~=99 . no , ,,

b=input('What codes do you wish to print? (-1 to stop, 99 for all)),

c=[c b];
end ;
c=c(l:length(c)-l);
if isempty(c)

c=l:l:ll;
end

d=input('Would you like to print the upper bounds with your data? (l=yes 0=no) ');

load master2;
load bounds2;
EbNo=-4:l:9;

for i=l:length(c)

lf semilogy(EbNo,master_BCH(c(i), :), 'ro: '); % For a channel bit -

EbNo in dB ,-,„•■., n 1 title(['BCH Code Family of (63,M) - Channel Bits]);

hold on;

if d == 1 . , ,h_M. % For a channel bit - EbNo in
semilogy(EbNoZ,Pb(c(l),:), D-),

dB
end

elseif a == 3
for j=l:14

if master_BCH -= 0 ,,.,■,,,, j , >
semilogy(EbNo(3),(n/k_list(c(i)).*-logl0(master_BCH(c(i),i))), rd);

end
end

elseif a == 4

plot(EbNof(10*logl0(n/k_list(c(i)))),(n/k_list(c(i))).*-logl0(master_BCH(c(i),:)),'r');

else
nebno=EbNo+(10*logl0(n/k_list(c(i))));
semilogy (nebno,master_BCH(c (i) , :) , 'r ')
title(['BCH Code Family of (63,M) - Information Bits']);

end;
end;

if d==l
legend('Experimental Data','Upper Bounds);

end
ylabel('P_e');
xlabel('dB');
%clc

axis([-4 9 le-8 1]);
hold off

55

% 'varest.m'
% Estimate Variance
% Used in Development of Statistical Adaption Method
% John Waterston
% November 12, 1998

clear
clc

n=63 ;
sigma=2;
Nb=4 ;

channel=randn(l, n)>0;
channe1=channe1*2-1;
noise=sigma*randn(Nb,n); % AWGN
channel=(channel''ones(l,Nb))'+noise;

l=length(channel);
vmax=max(max(channel)); % Voltage Max in mV
vmin=min(min(channel)); % Voltage Min in mV
a=511/(vmax-vmin); % 1/(Bin Size)
hg=zeros(1,512); % Define Histogram Array and initialize with
zeros
x=fix((channel-vmin)*a)+ 1 ;

% Create PDF Histogram (Scaled)
step=l/(size(channel,1)*size(channel, 2)) ;
for i = l:size(channel, 1)

for j=l:size(channel,2)
hg(x(i,j))=hg(x(i,j))+step;

end;
end;
E=0;
v=vmin:((vmax-vmin)/511):vmax;

% Mean - Expected Value
for i=lrlength(hg)

E=E+v (i) *hg ('i) ;
end;

% Second Moment -
m2 = 0;
for i=l:length(hg)

m2=m2+(v(i)-E)~2*hg(i) ;
end;

% Fourth Moment
m4 = 0;
for i=l:length(hg)

m4=m4+(v(i)-E)^4*hg(i) ;
end ;

mhat=((3/2)*(m2)"2-(l/2)*m4)'(l/4) ;

sig2=sqrt(m2-mhatA2);

disp(['The input value of sigma is: ',num2str(sigma)]);
disp(['The estimated value of sigma is: ',num2str(sig2)]);
disp(['The error is: ',num2str(abs((sigma-sig2)/sigma*100)),'%']);

% Display Data
figure(1)
plot(v,hg);
title(['John Waterston, Variance Estimation']);
xlabel('PDF(x)');
ylabel('Probability');

